Crystal Structure

1,2-Dicyano-1,2-bis(imidazolidine-2thione)digold(I) and 2,2-dicyano-1,1bis(dimethylthiourea)digold(I)

Fred B. Stocker ${ }^{\text {a }}$ and Doyle Britton ${ }^{\text {b* }}$

${ }^{\text {a }}$ Department of Chemistry, Macalester College, St Paul, MN 55105, USA, and ${ }^{\text {b }}$ Department of Chemistry, University of Minnesota, Minneapolis, MN 55455-0431, USA
Correspondence e-mail: britton@chemsun.chem.umn.edu

Received 25 January 2000
Accepted 14 April 2000
Gold(I) cyanide forms complexes with imidazolidine-2-thione (etu) and dimethylthiourea (dmtu) with the formula $\left[\mathrm{Au}_{2}(\mathrm{CN})_{2} L_{2}\right]$, i.e. the title complexes dicyano- $1 \kappa C, 2 \kappa C$-bis-(imidazolidine-2-thione)- $1 \kappa S, 2 \kappa S$-digold(I) $(A u-A u), \quad\left[\mathrm{Au}_{2}-\right.$ $\left.(\mathrm{CN})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\right]$, and dicyano- $1 \kappa^{2} C$-bis $\left(N, N^{\prime}\right.$-dimethylthiourea) $-2 \kappa^{2} S$-digold(I) $(A u-A u),\left[\mathrm{Au}_{2}(\mathrm{CN})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\right]$. In the etu complex, two approximately linear (etu)AuCN groups are held together by a weak homopolar $\mathrm{Au}-\mathrm{Au}$ bond [3.117 (1) A], with a torsion angle of 61 (3) $)^{\circ}$ between the two groups. In the dmtu complex, an approximately linear $\mathrm{Au}(\mathrm{dmtu})_{2}$ group is bound to an approximately linear $\mathrm{Au}(\mathrm{CN})_{2}$ group by a weak heteropolar $\mathrm{Au}-\mathrm{Au}$ bond [3.091 (1) A.], with a torsion angle of $83(5)^{\circ}$ between the two groups.

Comment

We have reported previously the preparation and structures of complexes of thioureas with copper(I) cyanide (Stocker et al., 1996) and with silver(I) cyanide (Stocker et al., 2000). We report here an extension of this work to gold(I) cyanide. The sulfur ligands used previously included thiourea (tu), 1-methyl-2-thiourea (mtu), 1,3-dimethyl-2-thiourea, 1,3-diethyl-2-thiourea (detu), 1,1,3,3-tetramethylthiourea (tmtu) and 2imidazolidinethione (N, N-ethylenethiourea, etu). For the

(I)

(II)
purposes of comparison, syntheses were attempted of the gold cyanide complexes of all of these ligands. Crystalline products could only be obtained with dmtu and etu, and the structures of 1,2-dicyano-1,2-bis(imidazolidine-2-thione)digold(I), (I),
and 2,2-dicyano-1,1-bis(dimethylthiourea)digold(I), (II), are reported here.
Ellipsoid plots indicating the atom labeling are shown in Figs. 1 and 2 for (I) and (II), respectively. In each case, there is a molecule containing two Au atoms, two CN groups and two thioureas, and the molecule is shaped like a twisted letter H with two approximately linear $\mathrm{Au} X_{2}$ or $\mathrm{Au} X Y$ groups held together by a weak $\mathrm{Au}-\mathrm{Au}$ bond. Because the end groups are not exactly linear, the torsion angles around the $\mathrm{Au}-\mathrm{Au}$ bond are not well defined. An average torsion angle can be obtained from the four individual torsion angles involving the $\mathrm{Au}-\mathrm{Au}$ bond; this is $61(3)^{\circ}$ for the etu complex and $83(5)^{\circ}$ for the dmtu complex.

Figure 1
Plot of the etu complex with displacement ellipsoids shown at the 50% probability level. H atoms are shown as cirlcles of arbitrary size.

The two molecules differ, however, in that the etu complex contains two (etu)AuCN groups, while in the dmtu complex, there is one $\mathrm{Au}(\mathrm{dmtu})_{2}$ group and one $\mathrm{Au}(\mathrm{CN})_{2}$ group. It is somewhat surprising that such a minor chemical change in the ligand in going from etu to dmtu should lead to a change in the isomer of $\left[\mathrm{Au}_{2}(\mathrm{CN})_{2} L_{2}\right]$ that is formed. Although the two compounds appear to be quite different in that the $\mathrm{Au}-\mathrm{Au}$ bond in the etu complex is non-polar while that in the dmtu complex is polar, the occurrence of the two forms suggests that they differ very little in energy.

Every H atom attached to nitrogen in both structures is involved in hydrogen bonding (Tables 2 and 4).

Gold compounds of this sort are well known. Bis[iodo(trimethylphosphine)gold(I)] (Ahrland et al., 1987) is an example of a non-polar $\mathrm{Au}-\mathrm{Au}$ complex $(\mathrm{Au}-\mathrm{Au} 3.169 \AA$ and torsion angle 70°), bis(imidazolidene-2-thione)gold(I) diiodoaurate (Friedrichs \& Jones, 1999) is an example of a polar isomer with etu as a ligand ($3.270 \AA$ and 74°) and dicyanobis[tris(2cyanoethyl)phosphine]digold (Hussain et al., 1996) is an example containing the $\mathrm{Au}(\mathrm{CN})_{2}$ group ($3.270 \AA$ and 80°).

Figure 2
Plot of the dtmu complex with displacement ellipsoids shown at the 50% probability level. H atoms are shown as circles of arbitrary size.

It is worth noting that the etu complex could be planar and have a center of symmetry; the sizes of the C and S atoms do not preclude such an arrangement. While it is possible that packing forces account for the lack of a center, none of the $13 \mathrm{Au}_{2}$ complexes in the current version of the Cambridge Structural Database (Allen \& Kennard, 1993) has a torsion angle around the $\mathrm{Au}-\mathrm{Au}$ bond of less than 60°. This suggests that perhaps a torsion angle near 90° is favored energetically in the isolated molecule.

In both of the complexes reported here, there are $\mathrm{Au}-\mathrm{Au}$ bonds, terminal CN groups and discrete molecules. This is different from the situation when the metal is Cu or Ag . In the seven complexes of CuCN with various thioureas (Stocker et al., 1996), there are 14 crystallographically different CN groups, 13 of which bridge between two Cu atoms. There are no $\mathrm{Cu}-\mathrm{Cu}$ bonds. In the six complexes of AgCN with various thioureas (Stocker et al., 2000), there are nine crystallographically different CN groups, five of which bridge between two Ag atoms, and one of which is involved in what appears to be a three-center bond with two Ag atoms. The latter is the only example of a direct $\mathrm{Ag}-\mathrm{Ag}$ interaction in any of the six complexes. About half of the time in both the Cu and Ag complexes, the S atom bridges between the metal atoms. As a consequence of the CN and S bridges, all of the Cu and Ag complexes have polymeric solid-state structures. In the two examples presented here, the direct $\mathrm{Au}-\mathrm{Au}$ bonds, which have no parallel in the Cu or Ag structures, lead to a completely different structural chemistry.

Experimental

Commercial chemicals were used without further purification. For the preparation of $\mathrm{AuCN}(\mathrm{etu}),(\mathrm{I}), \mathrm{AuCN}(56 \mathrm{mg}, 0.25 \mathrm{mmol})$ was added to a solution of etu ($177 \mathrm{mg}, 1.67 \mathrm{mmol}$) in distilled water $(10 \mathrm{ml})$. After heating to 363 K , a colorless solution was obtained which was
filtered hot. Upon cooling, colorless crystals separated out (yield: $47 \mathrm{mg}, 69 \%$). IR (KBr): 3460 (m), 3220 (br s), 3070 (w), 2890 (m), $2155(s), 1540(s), 1482(w), 1375(m), 1320(m), 1285(s), 1212(m)$, 1043 (w), 1015 (w), 997 (w), 917 (m), 750 (br m), 660 (w), 585 (br m), $495(w), 445(m) \mathrm{cm}^{-1}$. Analysis calculated for $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{AuN}_{3} \mathrm{~S}$: C 14.78, H 1.86, N 12.92, S 9.86\%; found: C 14.94, H 1.59, N 13.01, S 9.73\%. For the preparation of $\mathrm{AuCN}(\mathrm{dmtu})$, (II), $\mathrm{AuCN}(56 \mathrm{mg}, 0.25 \mathrm{mmol})$ was added to a solution of dmtu ($661 \mathrm{mg}, 5.0 \mathrm{mmol}$) dissolved in distilled water (10 ml). Mild heating (343 K) for about 30 min produced a clear colorless solution. Upon cooling, small block-like colorless crystals were deposited (yield: $60 \mathrm{mg}, 73 \%$). IR (KBr): 3385 (m), 3290 (s), 3235 (sh w), 3175 (w), 2960 (w), $2150(\mathrm{~s}), 1617$ (m), 1595 (s), 1530 (m), 1505 (s), 1455 (m), 1422 (m), 1375 (w$), 1290$ (s), $1190(m), 1148(w), 1042(m), 1015(w), 725(m), 630(w), 605(w), 510$ (m), $428(w) \mathrm{cm}^{-1}$. Analysis calculated for $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{AuN}_{3} \mathrm{~S}: \mathrm{C} 14.69, \mathrm{H}$ 2.46, N $12.84, \mathrm{~S} 9.80 \%$; found: C 14.72, H 2.57 , N 12.86, S 9.76%.

Compound (I)

Crystal data

$\left[\mathrm{Au}_{2}(\mathrm{CN})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\right]$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=2.966 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 1873 \\
& \quad \text { reflections } \\
& \theta=1.8-25.0^{\circ} \\
& \mu=20.403 \mathrm{~mm}^{-1} \\
& T=174(2) \mathrm{K} \\
& \text { Flat needle, colorless } \\
& 0.30 \times 0.10 \times 0.06 \mathrm{~mm}
\end{aligned}
$$

$M_{r}=650.28$
Triclinic, $P \overline{1}$
$a=7.4654(15) \AA$
$b=9.233$ (2) A
$c=11.895$ (2) \AA
$\alpha=103.73(3)^{\circ}$
$\beta=90.73$ (3) ${ }^{\circ}$
$\gamma=112.98$ (3) ${ }^{\circ}$
$V=728.1$ (3) \AA^{3}
Data collection
Siemens SMART area-detector
\quad diffractometer
ω scans
Absorption correction: multi-scan

$$
R_{\text {int }}=0.045
$$

$$
\theta_{\max }=25.03^{\circ}
$$

Absorption correction: multi-scan
$h=-8 \rightarrow 8$
(SADABS; Sheldrick, 1996;
Blessing, 1995)
$T_{\text {min }}=0.10, T_{\text {max }}=0.29$
5410 measured reflections
2545 independent reflections
2124 reflections with $I>2 \sigma(I)$
$k=-10 \rightarrow 10$
$l=-14 \rightarrow 14$
93 standard reflections frequency: the first 93 reflections were remeasured at the end of the data collection 10 h later intensity decay: $<1 \%$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (I).

$\mathrm{Au} 1-\mathrm{Au} 2$	$3.1167(10)$	$\mathrm{Au} 1-\mathrm{C} 1$	$1.964(10)$
$\mathrm{Au} 1-\mathrm{S} 1$	$2.292(3)$	$\mathrm{Au} 2-\mathrm{C} 2$	$1.968(10)$
$\mathrm{Au} 2-\mathrm{S} 2$	$2.295(3)$		
			$179.6(3)$
$\mathrm{C} 1-\mathrm{Au} 1-\mathrm{S} 1$	$173.6(3)$	$\mathrm{C} 2-\mathrm{Au} 2-\mathrm{S} 2$	
$\mathrm{C} 1-\mathrm{Au} 1-\mathrm{Au} 2-\mathrm{C} 2$	$57.8(4)$	$\mathrm{C} 1-\mathrm{Au} 1-\mathrm{Au} 2-\mathrm{S} 2$	$-122.5(3)$
$\mathrm{S} 1-\mathrm{Au} 1-\mathrm{Au} 2-\mathrm{C} 2$	$-116.2(3)$	$\mathrm{S} 1-\mathrm{Au} 1-\mathrm{Au} 2-\mathrm{S} 2$	$63.42(10)$

Table 2
Hydrogen-bonding geometry ($\left({ }^{\circ},{ }^{\circ}\right.$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 11-\mathrm{H} 11 \cdots \mathrm{~S} 2^{\mathrm{i}}$	0.86	2.76	$3.556(8)$	155
$\mathrm{~N} 12-\mathrm{H} 12 \cdots \mathrm{~N} 1^{\mathrm{ii}}$	0.86	2.14	$2.999(12)$	172
$\mathrm{~N} 21-\mathrm{H} 21 \cdots \mathrm{~N} 1^{\mathrm{iii}}$	0.86	2.15	$2.988(12)$	163
$\mathrm{~N} 22-\mathrm{H} 22 \cdots \mathrm{~N} 2^{\mathrm{iv}}$	0.86	2.07	$2.880(13)$	157
Symmetry codes:	(i)	$1-x,-y,-z ;$	(ii)	$1+x, 1+y, z ;$
(iv) $1-x,-y, 1-z$.			(iii)	$x, 1+y, z ;$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.093$
$S=0.94$
2545 reflections
163 parameters

Compound (II)

Crystal data

$\left[\mathrm{Au}_{2}(\mathrm{CN})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\right]$
$M_{r}=654.32$
Monoclinic, $P 2_{1} / c$
$a=13.3922$ (2) A
$b=7.81700(10) \AA$
$c=14.9588$ (3) A
$\beta=94.5060(10)^{\circ}$
$V=1561.15(4) \AA^{3}$
$Z=4$
$D_{x}=2.784 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2105
reflections
$\theta=1.5-25.0^{\circ}$
$\mu=19.033 \mathrm{~mm}^{-1}$
$T=174$ (2) K
Needle, colorless
$0.16 \times 0.06 \times 0.04 \mathrm{~mm}$

Data collection

Siemens SMART area-detector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996;
Blessing, 1995)
$T_{\text {min }}=0.27, T_{\text {max }}=0.47$
7629 measured reflections
2737 independent reflections
2421 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.063$
$S=1.07$
2737 reflections
168 parameters
H -atom parameters constrained

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0650 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=-0.005$
$\Delta \rho_{\text {max }}=1.91 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-1.52$ e \AA^{-3}

$$
\begin{aligned}
& R_{\text {int }}=0.030 \\
& \theta_{\max }=25.03^{\circ} \\
& h=-14 \rightarrow 15 \\
& k=-9 \rightarrow 8 \\
& l=-17 \rightarrow 17 \\
& 108 \text { standard reflections }
\end{aligned}
$$ frequency: the first 108 reflections were remeasured at the end of the data collection 14 h later intensity decay: $<1 \%$

$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0330 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.002$
$\Delta \rho_{\max }=1.97 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-1.27 \mathrm{e}^{-3}$
Extinction correction: SHELXTL
Extinction coefficient:
$3.5(8) \times 10^{-4}$
Table 3
Selected geometric parameters $\left(\AA,^{\circ}\right)$ for (II).

Au1-Au2	3.0911 (4)	$\mathrm{Au} 2-\mathrm{C} 1$	$1.983(8)$
$\mathrm{Au} 1-\mathrm{S} 1$	$2.285(2)$	$\mathrm{Au} 2-\mathrm{C} 2$	$1.984(8)$
$\mathrm{Au} 1-\mathrm{S} 2$	$2.304(2)$		
			$176.7(3)$
$\mathrm{S} 1-\mathrm{Au} 1-\mathrm{S} 2$	$169.70(7)$	$\mathrm{C} 1-\mathrm{Au} 2-\mathrm{C} 2$	
			$102.9(2)$
$\mathrm{S} 1-\mathrm{Au} 1-\mathrm{Au} 2-\mathrm{C} 1$	$-79.5(2)$	$\mathrm{S} 1-\mathrm{Au} 1-\mathrm{Au} 2-\mathrm{C} 2$	$-85.7(2)$
$\mathrm{S} 2-\mathrm{Au} 1-\mathrm{Au} 2-\mathrm{C} 1$	$91.8(2)$	$\mathrm{S} 2-\mathrm{Au} 1-\mathrm{Au} 2-\mathrm{C} 2$	

Table 4
Hydrogen-bonding geometry ($\AA,^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 12-\mathrm{H} 12 \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.86	2.55	$3.207(8)$	134
$\mathrm{~N} 13-\mathrm{H} 13 \cdots \mathrm{~N} 1^{\text {ii }}$	0.86	2.23	$2.972(9)$	144
$\mathrm{~N} 22-\mathrm{H} 22 \cdots \mathrm{~N} 2^{\mathrm{iii}}$	0.86	2.13	$2.936(10)$	156
$\mathrm{~N} 23-\mathrm{H} 23 \cdots \mathrm{~N} 1^{\mathrm{ii}}$	0.86	2.15	$2.968(8)$	158
Symmetry codes: (i) $-x, 1-y, 2-z ;$ (ii) $x, \frac{1}{2}-y, \frac{1}{2}+z ;$ (iii) $1-x, 1-y, 2-z$.				

In the final difference map for the etu compound there are 21 peaks and valleys with magnitudes greater than $0.75 \mathrm{e}_{\AA^{-3}}$; for the dtmu compound there are 15 such peaks. In both cases, all of these are between 0.85 and $1.20 \AA$ from one or other of the Au atoms.

For both compounds, data collection: ASTRO (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1994); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL

We thank Dr Victor G. Young Jr of the X-ray Crystallographic Laboratory at the University of Minnesota for help with the SMART and SHELXTL systems.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK1525). Services for accessing these data are described at the back of the journal.

References

Ahrland, S., Dreisch, K., Noren, B. \& Oskarsson, A. (1987). Acta Chem. Scand. Ser. A, 41, 173-178.
Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 31-37.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Friedrichs, S. \& Jones, P. G. (1999). Acta Cryst. C55, 1625-1627.
Hussain, M. S., Al-Arfaj, A. R., Akhtar, M. N. \& Isab, A. A. (1996). Polyhedron, 15, 2781-2783.
Sheldrick, G. M. (1994). SHELXTL. Version 5.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick. G. M. (1996). SADABS. University of Göttingen, Germany.
Siemens (1995). ASTRO and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Stocker, F. B., Britton, D. \& Young, V. G. Jr (2000). Inorg. Chem. Submitted.
Stocker, F. B., Troester, M. A. \& Britton, D. (1996). Inorg. Chem. 35, 31453153.

